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Abstract
The vector supersymmetry of the two-dimensional (2D) topological BF model
is extended to 2D Yang–Mills. The consequences of the corresponding Ward
identity on the ultraviolet behaviour of the theory are analysed.

PACS number: 1130P

1. Introduction

The relation between the two-dimensional Yang–Mills theory (2DYM) and the topological
models has been an object of intensive investigations over the past years [1–4]. In spite of
the lacking of local degrees of freedom, 2DYM is non-trivial when analysed from the point
of view of the topological field theories, as underlined for instance by [4] within the BRST
framework.

An interesting feature of the topological theories, of both Witten and Schwartz type, is the
existence, besides their BRST symmetry, of an additional invariance whose generators carry a
vector index. This further symmetry, called vector supersymmetry [5–7], gives rise, together
with the BRST generator, to an algebra of the Wess–Zumino type which, closing on-shell
on the spacetime translations, allows for a supersymmetric interpretation of the topological
models [5–7]. In particular, it has been shown [8] that the existence of the vector supersymmetry
is deeply related to the fact that the energy–momentum tensor can be expressed in the form
of a pure BRST variation, a key feature which can be taken as the proper definition of the
topological theories.

It therefore seems natural to ask ourselves whether this supersymmetric structure can also
be found in the 2DYM; this being the goal of this paper. As one can easily guess, we will be
able to show that this question can actually be answered in the affirmative. As a by-product, a
simple understanding of the ultraviolet finiteness of 2DYM will be provided.
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2. Symmetries of 2DYM

Let us start by considering the gauge-invariant Yang–Mills action in 2D Euclidean spacetime:

SYM = −1

4

∫
d2x F aµνF a

µν (2.1)

where Fa
µν = ∂µAν −∂νAµ +gf abcAb

µA
c
ν is the field strength and g denotes the gauge coupling

constant. Note that in 2D the gauge connection is dimensionless, so that the coupling constant
g has dimension one.

In order to analyse the symmetries of this model, it is convenient to switch to the first-order
formalism [4] by rewriting the expression (2.1) in the following form:

SYM = Stop + Sφ (2.2)

where

Stop = 1
2

∫
d2x εµνF a

µνφ
a (2.3)

and

Sφ = 1
2

∫
d2x φaφa (2.4)

with φa being an auxiliary scalar field. Expression (2.2) is obviously seen to be equivalent
to (2.1) upon elimination of the auxiliary field φa through the equations of motion. It worth
remarking here that the use of the first-order formalism allows us to interpret to some extent
the 2DYM as a deformation of a topological field theory, as it is easily recognized that the
term Stop in equation (2.3) is the action of the two-dimensional topological BF model [9].
The second term Sφ is metric-dependent, and therefore plays the role of the deformation.
Expression (2.2) also suggests what our strategy will be in order to establish the vector susy
Ward identity for the 2DYM. To this end we recall that the first term Stop of equation (2.2),
identifying a topological field theory, possesses the vector supersymmetry [9] which, however,
will not leave the second term invariant. Nevertheless, it is a remarkable property of the
2DYM that the breaking terms stemming from the non-invariance of the metric-dependent
part Sφ of the action (2.2) can be taken into account by the introduction of a suitable set of
external fields. As we shall see, this procedure will enable us to write down an off-shell
Ward identity which is an extension of the vector susy Ward identity of the topological two-
dimensional BF model [9]. This identity will strongly constrain the ultraviolet behaviour of
the 2DYM.

Once the classical counterpart of the theory is established, our next step is to get its
quantum version. To this end one has to fix the gauge invariance of the action; we add the
following gauge-fixing term, by using the Landau gauge condition:

Sgf =
∫

d2x
(
ba∂µAa

µ − ∂µca(Dµc)
a
)

(2.5)

where c, ca and ba are the ghost, the antighost and the Lagrange multiplier, respectively. The
gauge fixed action

S = SYM + Sgf = Stop + Sφ + Sgf (2.6)
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Table 1.

Aa
µ φa ca c̄a ba

Dim 0 1 0 0 1
Ng 0 0 1 −1 0

is invariant under the BRST transformations:

sAa
µ = − (∂µca + gf abcAb

µc
c
)

sca = 1
2gf

abccbcc

sφa = gf abccbφc

sca = ba sba = 0.

(2.7)

The dimension and the ghost-number of the fields are displayed in table 1. Let us now focus
on the following sector of the action (2.6):

Sinv = Stop + Sgf (2.8)

corresponding to the quantized topological BF model. As already underlined, besides the
BRST invariance (2.7), Sinv has a further symmetry; the so-called vector supersymmetry [9],
which reads

δµA
a
ν = 0

δµφ
a = −εµν∂

νca

δµc
a = −Aa

µ

δµc
a = 0

δµb
a = ∂µc

a.

(2.9)

In summary, we have

sSinv = 0

δµSinv = 0.
(2.10)

In addition, the generators s and δµ give rise to the following Wess–Zumino supersymmetric
algebra: {

s, δµ
}
φa = ∂µφ

a + εµν

δSinv

δAa
ν{

s, δµ
}
Aa

ν = ∂µA
a
ν − εµν

δSinv

δφa{
s, δµ

}
(c, b, c) = ∂µ (c, b, c)

(2.11)

which, closing on-shell on the spacetime translations, allows for a supersymmetric
interpretation of the two-dimensional BF model.

On the other hand, we can easily verify that, as expected, the metric-dependent term Sφ

of the quantized 2DYM action in equation (2.6) breaks the vector supersymmetry invariance
(2.9) of the topological sector. In fact,

δµO = −εµνφ
a∂νca (2.12)
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Table 2.

s δµ τ ξµ ηµν "µν

Ng 1 −1 0 1 2 1
Dim 1 0 0 0 0 −1

where we have defined O = 1
2φ

aφa . As previously remarked, our procedure in order to control
the effects of this breaking is to introduce external fields as follows:

SO =
∫

d2x
(
τO + ξµδµO + 1

2η
µνδµδνO + 1

2"
µνsδµδνO

)
(2.13)

with τ and ξµ being scalar and vector external fields, respectively, while ηµν and "µν are rank-
2 antisymmetric external fields. Their canonical dimensions and ghost-numbers are displayed
in table 2. It thus follows that the action

Sτ = S + SO (2.14)

is invariant under the modified nilpotent BRST transformations:

s̃Aa
µ = − (Dµc

)a
+ ξνενµφ

a

s̃ca = 1
2gf

abccbcc

s̃φa = gf abccbφc

s̃c̄a = ba s̃ba = 0

s̃τ = −∂µξ
µ s̃ξµ = 0

s̃"µν = −ηµν s̃ηµν = 0

(2.15)

s̃Sτ = 0. (2.16)

Moreover, remarkably in half, Sτ turns out to be left invariant by the following extended susy
transformations:

δ̃µc
a = −Aa

µ δ̃µA
a
ν = 0 (2.17)

δ̃µφ
a = −εµν∂

νca δ̃µc
a = 0

δ̃µb
a = ∂µc

a

δ̃µξν = −δµν (1 + τ) δ̃µτ = 0 (2.18)

δ̃µηνκ = −δµκξν + δµνξκ − ∂µ"νκ

δ̃µ"νκ = 0

δ̃µSτ = 0 (2.19)

where δµν is the flat Euclidean metric. We therefore see that, as announced, we have been able
to account for the breaking generated by the non-topological action Sφ by introducing suitable
external fields. We are now ready to implement the s̃ and the δ̃µ-invariance of the action Sτ as
Ward identities. This will be the task of the next section.
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Table 3.

γ aµ La ρa

Dim 1 1 0
Ng −1 −2 −1

3. Ward identities

Following the standard BRST procedure [10], we add to expression (2.14) a new term Sext ,
accounting for the nonlinear part of the modified BRST transformations (2.15):

Sext =
∫

d2x
(
γ aµs̃Aa

µ + Las̃ca + ρas̃φa
)

(3.1)

where the external fields γ aµ, La and ρa have dimensions and ghost-numbers displayed in
table 3. Therefore, the complete action

) = Sτ + Sext (3.2)

obeys the Slavnov–Taylor identity

S()) =
∫

d2x

(
δ)

δAa
µ

δ)

δγ aµ
+

δ)

δφa

δ)

δρa
+

δ)

δLa

δ)

δca
+ ba

δ)

δc̄a
− ∂µξ

µ δ)

δτ
− 1

2
ηµν δ)

δ"µν

)
= 0. (3.3)

Let us also introduce, for further use, the nilpotent linearized Slavnov–Taylor operator B)

B) =
∫

d2x

(
δ)

δAa
µ

δ

δγ aµ
+

δ)

δγ aµ

δ

δAa
µ

+
δ)

δφa

δ

δρa
+

δ)

δρa

δ

δφa

+
δ)

δca

δ

δLa
+

δ)

δLa

δ

δca
+ ba

δ

δc̄a
− ∂µξ

µ δ

δτ
− 1

2
ηµν δ

δ"µν

)
(3.4)

B)B) = 0. (3.5)

Turning now to the vector invariance δ̃µ, it is easily verified that, due to the introduction of the
external fields γ aµ, La , ρa , it takes the form of a linearly broken Ward identity, namely

Wµ) = *cl
µ (3.6)

with

Wµ =
∫

d2x

(
εµνρ

a δ

δAa
ν

− Aa
µ

δ

δca
− εµν

(
γ aν + ∂νc̄a

) δ

δφa
− La δ

δγ aµ

+ ∂µc̄
a δ

δba
− (1 + τ)

δ

δξµ
+

1

2

(
δαµξ

β − δβµξ
α − ∂µ"

) δ

δηαβ

)
(3.7)

and

*cl
µ =

∫
d2x

(−γ aν∂µA
a
ν + La∂µc

a − ρa∂µφ
a

−εµνρ
a∂νba − Laξνενµφ

a + γ a
µξν∂

vc̄a − γ a
ν ξ

ν∂µc̄
a + γ a

ν γ
a
µξ

ν
)
. (3.8)

We observe that the breaking term *cl
µ , being linear in the quantum fields, is a purely classical

breaking and will not get renormalized [10]. It is worth underlining that the final form of the
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Ward identity (3.6) is the expected one, being indeed a common feature of the topological
models, including in particular the associated classical breaking term [6–9,11]. We also point
out that, in the present case, the complete action ) is constrained by a further linearly broken
local Ward identity:

Fµν(x)) = *F
µν(x) (3.9)

with

Fµν(x) = ενµφ
a(x)

δ

δca(x)
+ ενµL

a(x)
δ

δρa(x)
+

δ

δ"µν(x)
+ ∂ν

δ

δξµ(x)
− ∂µ

δ

δξν(x)

+
(
γ av + ∂vc̄a

) δ

δAaµ(x)
− (

γ aµ + ∂µc̄a
) δ

δAaν
(3.10)

and

*F
µν(x) = γ a

µ∂νb
a − γ a

ν ∂µb
a. (3.11)

In particular, the operators B) , Wµ and Fµν(x) give rise to a closed algebra given by{B),Wµ

} = Pµ +
∫

d2x ξνFνµ(x){Wµ,Wν

} = {Wµ,Fσρ(x)
} = 0{B),Fσρ(x)

} = {Fµν(x),Fσρ(y)
} = 0

(3.12)

where Pµ is the functional operator of the spacetime translations, i.e.

Pµ =
∑

(all fieldsϕ)

∫
d2x ∂µϕ

δ

δϕ
. (3.13)

Finally, let us display the whole set of conditions which are usually imposed in the quantization
of Yang–Mills theories in the Landau gauge [10], namely:

• The linearly broken ghost equation Ward identity

Ga) = *a (3.14)

with

Ga =
∫

d2x

(
δ

δca
+ gf abcc̄b

δ

δbc

)
(3.15)

and

*a =
∫

d2x g f abc
(
γ bµAc

µ − Lbcc + ρbφc
)
. (3.16)

• The gauge-fixing condition

δ)

δba
= ∂µA

aµ + ∂ν"
µν∂µc̄

a. (3.17)

• The antighost equation(
δ

δc̄a
+ ∂µ

δ

δγ a
µ

)
) = ∂νη

µν∂µc̄
a + ∂ν"

µν∂µb
a.

As we shall see in the next section, the identities (3.3), (3.6) and (3.9) turn out to have
far-reaching consequences, accounting for instance for the absence of non-trivial invariant
counterterms.
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4. Invariant counterterms

Following the set up of the algebraic renormalization [10] and making use of the general results
on the cohomology of the Yang–Mills theories [12], it is not difficult to establish that the model
and its Ward identities are renormalizable. Here, we shall limit ourselves only to state the final
result, aiming to provide an algebraic understanding of the finiteness properties of 2DYM. Let
us look then at the possible BRST-invariant counterterm )c which may affect the ultraviolet
behaviour of the model. We recall that )c is an integrated local polynomial with dimension
bounded by two. Making use of the Ward identities established in the previous section, )c is
found to obey the conditions

δ)c

δbc
= Ga)c = 0 (4.1)(

δ

δc̄a
+ ∂µ

δ

δγ a
µ

)
= 0 (4.2)

B))c = 0 (4.3)

Fµν(x))c = 0 (4.4)

Wµ)c = 0. (4.5)

From equation (4.1) it follows that )c is independent of the Lagrange multiplier ba and that it
only depends on the differentiated ghost ∂µca [10]. Moreover, due to equation (4.2), the fields
c̄a and γ a

µ enter through the combination [10]

γ̂ a
µ ≡ γ a

µ + ∂µc̄
a. (4.6)

Finally, from conditions (4.3) and (4.4) it turns out that the most general BRST-invariant
counterterm can be written as

)c = 1 + B)1̃ (4.7)

where

1 = η

∫
d2x

φ2

2
(4.8)

with η being an arbitrary parameter and 1̃ denotes an integrated local polynomial with ghost
number −1, representing the trivial part of the cohomology of the operator B) . Observe that,
due to equation (4.4) and to the algebraic relations (3.12), we have

Fµν(x)B)1̃ = B)Fµν(x)1̃ = 0 (4.9)

from which it follows that

Fµν(x)1̃ = B)2µν(x) (4.10)

for some local polynomial 2µν(x) of ghost number −3. We are left thus with a unique non-
trivial BRST-invariant counterterm given by equation (4.8). Expression (4.8) is physically
equivalent to the standard Yang–Mills counterterm

∫
d2x F aµνF a

µν . This statement relies on
the observation that the auxiliary field φa has, in fact, the role of εµνF a

µν , as is implied by the
equations of motion. Also, it should be observed that the coefficient η in equation (4.8) has the
meaning of a possible ultraviolet renormalization of the gauge coupling constant g compatible
with the BRST invariance.
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It remains now to impose the final constraint (4.5). Making use of the algebraic relations
(3.12), it follows that

WµB)1̃ = −B)Wµ1̃ +
{B),Wµ

}
1̃

= −B)Wµ1̃ +
∫

d2x ξνFνµ1̃

= −B)

(
Wµ1̃ +

∫
d2x ξν2νµ

)
(4.11)

where use has been made of equation (4.10) and of the fact that B)ξµ = 0. Therefore, from
the requirement of invariance under the Ward operator Wµ, we have

Wµ)c = Wµ1 − B)

(
Wµ1̃ +

∫
d2x ξν2νµ

)
= 0 (4.12)

i.e.

−η

∫
d2x εµνγ̂

aνφa = B)

(
Wµ1̃ +

∫
d2x ξν2νµ

)
(4.13)

implying that
∫

d2x εµνγ̂
aνφa is a trivial element of the integrated cohomology of B) .

However, it can be shown that this term cannot actually be cast in the form of a pure B)-
variation, as it identifies a non-trivial element of the integrated cohomology of B) , namely∫

d2x εµνγ̂
aνφa �= B)-variation. (4.14)

The only way out is thus

η = 0 (4.15)

meaning that there is no non-trivial BRST-invariant counterterm compatible with the vector
Ward identity (3.6), providing therefore a simple algebraic understanding of the well known
ultraviolet finiteness properties of 2DYM4. It is useful remarking that the algebraic proof of
the absence of non-trivial counterterms given here follows exactly the same lines of the proofs
of the ultraviolet finiteness of the topological models [6–9,11], emphasizing, in particular, the
pivotal role of the vector Ward identity (3.6).
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